A、《圓錐曲線之代數(shù)體系》
B、《圓錐曲線解析》
C、《代數(shù)在幾何上的應(yīng)用》
D、《論切觸》
您可能感興趣的試卷
你可能感興趣的試題
A、邏輯推演
B、等比求和法
C、杠桿原理
D、尺規(guī)作圖法
A、二次冪和公式
B、尺規(guī)作圖法
C、假設(shè)法
D、切線求法
A、希臘人
B、埃及人
C、印度人
D、阿拉伯人
A、象形文字
B、楔形文字
C、僧侶文
D、麥羅埃文
A、q為素?cái)?shù)
B、q為合數(shù)
C、q等于1
D、q為非整數(shù)
最新試題
非歐幾何的誕生,引起了數(shù)學(xué)概念、數(shù)學(xué)思想和數(shù)學(xué)方法等方面革命性的變化。19世紀(jì)中期之前,下列為非歐幾何的產(chǎn)生作出突出貢獻(xiàn)的有()
數(shù)字發(fā)明之前,常見的三種記數(shù)方式有()
高次方程數(shù)值求解集大成者是()
我國著名數(shù)學(xué)家()等人利用代數(shù)方法設(shè)計(jì)了一整套的機(jī)械化程序,在1980年前后實(shí)現(xiàn)了初等幾何和微分幾何中的一些主要定理的機(jī)器證明,國際上稱他的方法為“吳方法”,使得中國學(xué)者在數(shù)學(xué)機(jī)械化領(lǐng)域處于領(lǐng)先地位,為計(jì)算數(shù)學(xué)和計(jì)算機(jī)技術(shù)的發(fā)展開辟了廣闊的前景。
將微積分學(xué)基本概念進(jìn)行嚴(yán)密論述,成為嚴(yán)格微積分學(xué)的奠基者的是()
()將三角形從天文學(xué)奴仆的地位解放出來,使三角學(xué)脫離了天文學(xué)成為一個(gè)獨(dú)立的數(shù)學(xué)分支。
確立了數(shù)學(xué)演繹范式的著作是()
斐波那契綜合阿拉伯和希臘資料著成的關(guān)于算術(shù)和代數(shù)的重要著作是()
簡述隋唐中國數(shù)學(xué)的兩件大事。
泛函分析之父是()