A.KNN
B.SVM
C.Bayes
D.神經(jīng)網(wǎng)絡(luò)
您可能感興趣的試卷
你可能感興趣的試題
A.DBSCAN
B.C4.5
C.K-Mean
D.EM
A.與同一時(shí)期其他數(shù)據(jù)對比
B.可視化
C.基于模板的方法
D.主觀興趣度量
A.系數(shù)
B.幾率
C.Cohen度量
D.興趣因子
A.頻繁子集挖掘
B.頻繁子圖挖掘
C.頻繁數(shù)據(jù)項(xiàng)挖掘
D.頻繁模式挖掘
A.s=<{2,4},{3,5,6},{8}>,t=<{2},{3,6},{8}>
B.s=<{2,4},{3,5,6},{8}>,t=<{2},{8}>
C.s=<{1,2},{3,4}>,t=<{1},{2}>
D.s=<{2,4},{2,4}>,t=<{2},{4}>
最新試題
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
要將工作申請分為兩類,并使用密度估計(jì)來檢測離職申請人,我們可以使用生成分類器。
由于決策樹學(xué)會了對離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
完整性,一致性,時(shí)效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個(gè)維度指標(biāo)。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
使用正則表達(dá)式可以找到一個(gè)文本文件中所有可能出現(xiàn)的手機(jī)號碼。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
管理員不需要驗(yàn)證就可以訪問數(shù)據(jù)存儲系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。