A.無(wú)序規(guī)則
B.窮舉規(guī)則
C.互斥規(guī)則
D.有序規(guī)則
您可能感興趣的試卷
你可能感興趣的試題
A.無(wú)序規(guī)則
B.窮舉規(guī)則
C.互斥規(guī)則
D.有序規(guī)則
A.無(wú)序規(guī)則
B.窮舉規(guī)則
C.互斥規(guī)則
D.有序規(guī)則
A.無(wú)序規(guī)則
B.窮舉規(guī)則
C.互斥規(guī)則
D.有序規(guī)則
A.基于類的排序方案
B.基于規(guī)則的排序方案
C.基于度量的排序方案
D.基于規(guī)格的排序方案
A.冗余屬性不會(huì)對(duì)決策樹的準(zhǔn)確率造成不利的影響
B.子樹可能在決策樹中重復(fù)多次
C.決策樹算法對(duì)于噪聲的干擾非常敏感
D.尋找最佳決策樹是NP完全問(wèn)題
最新試題
數(shù)據(jù)存儲(chǔ)體系中并不牽扯計(jì)算機(jī)網(wǎng)絡(luò)這一環(huán)節(jié)。
給定用于2類分類問(wèn)題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
使用正則表達(dá)式可以找到一個(gè)文本文件中所有可能出現(xiàn)的手機(jī)號(hào)碼。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過(guò)允許更多隱藏狀態(tài)來(lái)增加訓(xùn)練數(shù)據(jù)的可能性。
無(wú)論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來(lái)設(shè)計(jì)和實(shí)現(xiàn)的。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來(lái)完成。