A.Euclidean距離
B.Manhattan距離
C.Eula距離
D.Minkowski距離
您可能感興趣的試卷
你可能感興趣的試題
A.判定樹歸納
B.貝葉斯分類
C.后向傳播分類
D.基于案例的推理
A.分類和聚類都是有指導(dǎo)的學(xué)習(xí)
B.分類和聚類都是無(wú)指導(dǎo)的學(xué)習(xí)
C.分類是有指導(dǎo)的學(xué)習(xí),聚類是無(wú)指導(dǎo)的學(xué)習(xí)
D.分類是無(wú)指導(dǎo)的學(xué)習(xí),聚類是有指導(dǎo)的學(xué)習(xí)
A.判定樹歸納
B.貝葉斯分類
C.后向傳播分類
D.基于案例的推理
A.OLTP系統(tǒng)主要用于管理當(dāng)前數(shù)據(jù),而OLAP系統(tǒng)主要存放的是歷史數(shù)據(jù)
B.在數(shù)據(jù)的存取上,OLTP系統(tǒng)比OLAP系統(tǒng)有著更多的寫操作
C.對(duì)OLTP系統(tǒng)上的數(shù)據(jù)訪問量往往比對(duì)OLAP系統(tǒng)的數(shù)據(jù)訪問量要大得多
D.OLAP系統(tǒng)中往往存放的是匯總的數(shù)據(jù),而OLTP系統(tǒng)中往往存放詳細(xì)的數(shù)據(jù)
A.企業(yè)倉(cāng)庫(kù)
B.數(shù)據(jù)集市
C.虛擬倉(cāng)庫(kù)
D.信息倉(cāng)庫(kù)
最新試題
使決策樹更深將確保更好的擬合度,但會(huì)降低魯棒性。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。
使用偏差較小的模型總是比偏差較大的模型更好。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
要將工作申請(qǐng)分為兩類,并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類器。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。