填空題數(shù)據(jù)抽取的兩個常見類型是靜態(tài)抽取和增量抽取。靜態(tài)抽取用于()填充數(shù)據(jù)倉庫,增量抽取用于進(jìn)行數(shù)據(jù)倉庫的維護(hù)。
您可能感興趣的試卷
最新試題
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點時,隨機(jī)森林通常比AdaBoost更好。
題型:判斷題
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
題型:判斷題
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
題型:判斷題
要將工作申請分為兩類,并使用密度估計來檢測離職申請人,我們可以使用生成分類器。
題型:判斷題
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓(xùn)練集上實現(xiàn)更好的分類精度。
題型:判斷題
由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
題型:判斷題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
題型:判斷題
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
題型:判斷題
隨機(jī)梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
題型:判斷題
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
題型:判斷題