抽自兩個(gè)總體的獨(dú)立隨機(jī)樣本提供的信息如表所示:
在α=0.05顯著性水平下,檢驗(yàn)假設(shè),得到的結(jié)論是()。
A.拒絕H0
B.不拒絕H0
C.可以拒絕也可以不拒絕H0
D.可能拒絕也可能不拒絕H0
您可能感興趣的試卷
你可能感興趣的試題
如果能夠證明某一電視劇在播出的前13周其觀眾收視率超過(guò)了25%,則可以斷定它獲得了成功。假定由400個(gè)家庭組成的一個(gè)隨機(jī)樣本中,有112個(gè)家庭看過(guò)該電視劇,在α=0.01的顯著性水平下,檢驗(yàn)假設(shè),得到的結(jié)論是()。
A.拒絕H0
B.不拒絕H0
C.可以拒絕也可以不拒絕H0
D.可能拒絕也可能不拒絕H0
A.拒絕H0
B.不拒絕H0
C.可以拒絕也可以不拒絕H0
D.可能拒絕也可能不拒絕H0
檢驗(yàn)假設(shè),由隨機(jī)樣本得到的P=0.6548。在α=0.05的顯著性水平下,得到的結(jié)論是()。
A.拒絕H0
B.不拒絕H0
C.可以拒絕也可以不拒絕H0
D.可能拒絕也可能不拒絕H0
項(xiàng)新型減肥方法聲稱參加者在一個(gè)月內(nèi)平均能減去8公斤。由40位使用該方法減肥的人組成一個(gè)隨機(jī)樣本,其平均減重7公斤,標(biāo)準(zhǔn)差為3.2公斤。在α=0.05的顯著性水平下,檢驗(yàn)假設(shè),得到的結(jié)論為()。
A.拒絕H0
B.不拒絕H0
C.可以拒絕也可以不拒絕H0
D.可能拒絕也可能不拒絕H0
一項(xiàng)調(diào)查表明,5年前每個(gè)家庭每天看電視的平均時(shí)間為6.7小時(shí)。而最近對(duì)200個(gè)家庭的調(diào)查結(jié)果是:每個(gè)家庭每天看電視的平均時(shí)間為7.25小時(shí),標(biāo)準(zhǔn)差為2.5小時(shí)。在α=0.05的顯著性水平下,檢驗(yàn)假設(shè),得到的結(jié)論為()。
A.拒絕H0
B.不拒絕H0
C.可以拒絕也可以不拒絕H0
D.可能拒絕也可能不拒絕H0
最新試題
一元線性回歸模型y=a+bx+ε,則下面不正確的為()。
用頻率可以估算概率的依據(jù)是()。
盒中有7個(gè)球,編號(hào)為1至7號(hào),隨機(jī)取2個(gè),取出球的最小號(hào)碼是3的概率為()。
n階方陣A的特征值λ1+λ2+…+λn=()
設(shè)隨機(jī)事件B?A,且P(A)=0.3,P(B)=0.2,則P(A-B)=()
設(shè)總體X和Y都服從正態(tài)分布N(0,σ2),X1,…,Xn和Y1,…,Yn分別是總體X和Y的樣本且容量都為n,其樣本均值和樣本方差為X ?,SX2和Y ?,SY2,則有()。
?設(shè)總體X服從正態(tài)分布N(0,σ2),X1,…,X10為其樣本,統(tǒng)計(jì)量?服從F分布,則i的值為()。
設(shè)隨機(jī)事件A,B滿足P(A)=0.2,P(B)=0.4,P(B丨A)=0.6,則P(B-A)=()。
設(shè)為標(biāo)準(zhǔn)正態(tài)分布函數(shù),且,相互獨(dú)立,令,則由中心極限定理知的分布函數(shù)近似于()。
?已知X的分布列為P{X=-1}=1/2,P{X=0}=1/3,P{X=1}=1/6,則E(X)的值為()。