A.數(shù)據(jù)倉庫隨時間的變化不斷增加新的數(shù)據(jù)內(nèi)容
B.捕捉到的新數(shù)據(jù)會覆蓋原來的快照
C.數(shù)據(jù)倉庫隨事件變化不斷刪去舊的數(shù)據(jù)內(nèi)容
D.數(shù)據(jù)倉庫中包含大量的綜合數(shù)據(jù),這些綜合數(shù)據(jù)會隨著時間的變化不斷地進(jìn)行重新綜合
您可能感興趣的試卷
你可能感興趣的試題
A.探索性數(shù)據(jù)分析
B.建模描述
C.預(yù)測建模
D.尋找模式和規(guī)則
A.分類
B.聚類
C.關(guān)聯(lián)分析
D.隱馬爾可夫鏈
A.關(guān)聯(lián)規(guī)則發(fā)現(xiàn)
B.聚類
C.分類
D.自然語言處理
最新試題
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
使用偏差較小的模型總是比偏差較大的模型更好。
任務(wù)調(diào)度系統(tǒng)的設(shè)計與實現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
數(shù)據(jù)收集中的拉模式需要通過定時的方式不斷地觸發(fā),才能源源不斷地獲取對應(yīng)的數(shù)據(jù)。
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
通過統(tǒng)計學(xué)可以推測擲兩個撒子同時選中3點的幾率。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。