為比較兩個(gè)學(xué)校同一年級(jí)學(xué)生數(shù)學(xué)課程的成績(jī),隨機(jī)地抽取學(xué)校A的9個(gè)學(xué)生,得分?jǐn)?shù)的平均值為方差為隨機(jī)地抽取學(xué)校B的15個(gè)學(xué)生,得分?jǐn)?shù)的平均值為方差為設(shè)樣本均來(lái)自正態(tài)總體且方差相等,參數(shù)均未知,兩樣本獨(dú)立。求均值差μA-μB的置信水平為0.95的置信區(qū)間。
您可能感興趣的試卷
你可能感興趣的試題
以X表示某商店從早晨開(kāi)始營(yíng)業(yè)起直到第一顧客到達(dá)的等待時(shí)間(以分計(jì)),X的分布函數(shù)是
求下述概率:
以X表示某商店從早晨開(kāi)始營(yíng)業(yè)起直到第一顧客到達(dá)的等待時(shí)間(以分計(jì)),X的分布函數(shù)是
求下述概率:
以X表示某商店從早晨開(kāi)始營(yíng)業(yè)起直到第一顧客到達(dá)的等待時(shí)間(以分計(jì)),X的分布函數(shù)是
求下述概率:
以X表示某商店從早晨開(kāi)始營(yíng)業(yè)起直到第一顧客到達(dá)的等待時(shí)間(以分計(jì)),X的分布函數(shù)是
求下述概率:
以X表示某商店從早晨開(kāi)始營(yíng)業(yè)起直到第一顧客到達(dá)的等待時(shí)間(以分計(jì)),X的分布函數(shù)是
求下述概率:
最新試題
設(shè)總體X~N(μ,σ2),μ和σ是未知參數(shù)。為估計(jì)參數(shù)σ2的置信區(qū)間,應(yīng)選T=()作為樞軸變量,并且T服從()。
?設(shè)總體X服從正態(tài)分布N(0,σ2),X1,X2,…,Xn為其樣本,X ?與S2分別是樣本均值和樣本方差,則()。?
設(shè)隨機(jī)變量X服從參數(shù)為5的指數(shù)分布,則E(-3x+2)=()。
?設(shè)X1,X2,…,X_(n+m)是來(lái)自正態(tài)總體N(0,σ2)的樣本,統(tǒng)計(jì)量下列選項(xiàng)中,關(guān)于統(tǒng)計(jì)量T說(shuō)法正確的是()。
?下面4個(gè)變量的散點(diǎn)圖中,可直觀判斷兩變量間無(wú)相關(guān)關(guān)系的是()。
設(shè)隨機(jī)事件B?A,且P(A)=0.3,P(B)=0.2,則P(A-B)=()
?當(dāng)n足夠大時(shí),二項(xiàng)分布B(n,p)依分布收斂于()。
?若小孩身高Y與年齡X之間的回歸方程為y=73.93+7.19x,那么據(jù)此可以預(yù)測(cè)小孩10歲時(shí)的身高,下面正確是()。
設(shè)事件A與B互不相容,且P(A)=0.4,P(B)=0.2,則P(A∪B)=()。
一元線性回歸模型y=a+bx+ε,則下面不正確的為()。