A.經(jīng)過兩條直線有且只有一個平面
B.經(jīng)過一條直線和一個點有且只有一個平面
C.如果平面α與β有三個公共點,則兩個平面一定是重合平面
D.兩個不重合的平面α、β有一個公共點,那么它們有且只有一條通過這個點的公共直線
您可能感興趣的試卷
你可能感興趣的試題
如果直線l、m與平面α、β、γ滿足和m⊥γ,那么必有()。
A.α⊥γ且l⊥m
B.α⊥γ且m//β
C.m//β且l⊥m
D.α//β且α⊥γ
已知球面上過A、B、C三點的截面到球心的距離是球半徑的一半,且AB=BC=CA=2,則球表面積是()。
A.A
B.B
C.C
D.D
在正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分別是棱DD1、DC1的中點,則直線OM()。
A.是AC和MN的公垂線
B.垂直于AC,但不垂直于MN
C.垂直于MN,但不垂直于AC
D.與AC、MN都不垂直
最新試題
如圖,過半徑為R的球面上一點P作三條兩兩垂直的弦PA、PB、PC。(1)求證:PA2+PB2+PC2為定值;(2)求三棱錐P-ABC的體積的最大值。
如圖,在二面角α-l-β中,,ABCD為矩形,,且PA=AD,M、N依次是AB、PC的中點。(1)求二面角α-l-β的大?。唬?)求證:MN⊥AB;(3)求異面直線PA與MN所成角的大小。
已知四棱錐P-ABCD,它的底面是邊長為a的菱形,且∠ABC=120°,PC⊥平面ABCD,又PC=a,E為PA的中點。(1)求證:平面EBD⊥平面ABCD;(2)求點E到平面PBC的距離;(3)求二面角A-BE-D的大小。
長方體的一個頂點上的三條棱分別是3、4、5,且它的八個頂點都在同一球面上,這個球的表面積是()。
球面上有3個點,其中任意兩點的球面距離都等于大圓周長的,經(jīng)過3個點的小圓的周長為4π,那么這個球的半徑為()。
正三棱柱ABC-A1B1C1的底面邊長為a,在側(cè)棱BB1上截取,在側(cè)棱CC1上截取CE=a,過A、D、E作棱柱的截面ADE。(1)求△ADE的面積;(2)求證:平面ADE⊥平面ACC1A1。
在正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分別是棱DD1、DC1的中點,則直線OM()。
已知四點,無三點共線,則可以確定()。
正三棱錐的底面邊長是2cm,側(cè)棱與底面成60°角,求它的外接球的表面積。
一個圓在平面上的射影圖形是()。