您可能感興趣的試卷
你可能感興趣的試題
在△ABC中,已知A,B,C對(duì)應(yīng)的邊分別為a,b,c,且∠C=2∠A,,
(1)求cosC和cosB的值;
(2)當(dāng)時(shí),求a,b,c的值。
A.合作學(xué)習(xí)
B.探究學(xué)習(xí)
C.機(jī)械學(xué)習(xí)
D.自主學(xué)習(xí)
A.等價(jià)
B.相似
C.合同
D.正交
最新試題
在高中數(shù)學(xué)課程中為什么要講微積分初步?
已知函數(shù)。(1)當(dāng)時(shí),求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍。
案例:某教師在對(duì)基本初等函數(shù)進(jìn)行教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:?jiǎn)栴}:(1)指出該生解題過(guò)程中的錯(cuò)誤,分析其錯(cuò)誤原因;(2)給出你的正確解答;(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。
高中"方程的根與函數(shù)的零點(diǎn)"(第一節(jié)課)設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)對(duì)二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會(huì)函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,②理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。③通過(guò)對(duì)現(xiàn)實(shí)問(wèn)題的分析,體會(huì)用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系。掌握函數(shù)零點(diǎn)存在性的判斷。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo),設(shè)計(jì)一個(gè)問(wèn)題引入,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)問(wèn)題鏈(至少包含三個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,給出至少一個(gè)實(shí)例和三個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;(4)確定本節(jié)課的教學(xué)重點(diǎn);(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長(zhǎng)為,求圓的方程。
高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;②能在具體的問(wèn)題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題,體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對(duì)日常生活中的實(shí)際問(wèn)題進(jìn)行分析,引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識(shí)解決一些簡(jiǎn)單的問(wèn)題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過(guò)程中,通過(guò)類比函數(shù)概念、性質(zhì)、表達(dá)式得到對(duì)等差數(shù)列相應(yīng)問(wèn)題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個(gè)實(shí)例,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個(gè)問(wèn)題,讓學(xué)生用等差數(shù)列求解,并說(shuō)明設(shè)計(jì)意圖;(3)確定本節(jié)課的教學(xué)重點(diǎn);(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?(5)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?
請(qǐng)簡(jiǎn)要描述數(shù)學(xué)應(yīng)用意識(shí)及推理能力的主要表現(xiàn)。
已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時(shí)a與b的夾角θ的值;(2)當(dāng)a·b取得最大值時(shí),求實(shí)數(shù)λ,使a+λb的值最小,并對(duì)這一結(jié)論作出幾何解釋。
案例:下面是一位老師在講"簡(jiǎn)單幾何體的三視圖"的教學(xué)片斷,請(qǐng)閱讀后回答問(wèn)題:創(chuàng)設(shè)問(wèn)題情境,從學(xué)生熟悉的古詩(shī)入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識(shí)廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩(shī)。師:哪位同學(xué)能說(shuō)說(shuō)蘇東坡是怎樣觀察廬山的嗎?都有什么感覺(jué)?生:橫看,側(cè)看,遠(yuǎn)看,近看,高看,低看。都得到不同的效果。師:回答得非常好。可能有些同學(xué)會(huì)納悶,今天老師上數(shù)學(xué)課怎么會(huì)念起古詩(shī)來(lái)?其實(shí),這首詩(shī)隱含著一些數(shù)學(xué)知識(shí)。它教會(huì)了我們?cè)鯓佑^察物體,這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容--簡(jiǎn)單組合體的三視圖(寫板書)。問(wèn)題:(1)該教師的課堂引入有什么特色,對(duì)教學(xué)有什么好處?(2)簡(jiǎn)單談?wù)剶?shù)學(xué)教學(xué)過(guò)程中怎樣調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情激發(fā)學(xué)習(xí)興趣。
高中"隨機(jī)抽樣"設(shè)定的教學(xué)目標(biāo)如下:①通過(guò)對(duì)具體的案例分析,逐步學(xué)會(huì)從現(xiàn)實(shí)生活中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題;②結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性;③以問(wèn)題鏈的形式深刻理解樣本的代表性。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,設(shè)計(jì)至少兩個(gè)問(wèn)題,并說(shuō)明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,給出至少兩個(gè)實(shí)例,并說(shuō)明設(shè)計(jì)意圖;(3)根據(jù)教學(xué)目標(biāo)③,設(shè)計(jì)問(wèn)題鏈(至少包含兩個(gè)問(wèn)題),并說(shuō)明設(shè)計(jì)意圖;(4)相對(duì)義務(wù)教育階段的統(tǒng)計(jì)教學(xué),本節(jié)課的教學(xué)重點(diǎn)是什么?(5)作為高中階段的起始課,其難點(diǎn)是什么?(6)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?