問答題

案例:某教師在對(duì)根與系數(shù)關(guān)系綜合運(yùn)用教學(xué)時(shí),給學(xué)生出了如下一道練習(xí)題:
設(shè)α、β是方程x2-2kx+k+6=0的兩個(gè)實(shí)根,則(α-1)2+(β-1)2的最小值是()。
A.
B.8
C.18
D.不存在
某學(xué)生的解答過程如下:
利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6
所以。故選A。
問題:(1)指出該生解題過程中的錯(cuò)誤,分析其錯(cuò)誤原因;
(2)給出你的正確解答;
(3)指出你在解題時(shí)運(yùn)用的數(shù)學(xué)思想方法。


您可能感興趣的試卷

你可能感興趣的試題

最新試題

甲、乙兩人參加某電視臺(tái)舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨(dú)立作答,然后由乙回答剩余3道題,每人答對(duì)其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對(duì)其中的4道題,乙答對(duì)每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設(shè)甲答對(duì)題目的個(gè)數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望。

題型:?jiǎn)柎痤}

已知函數(shù)。(1)當(dāng)時(shí),求函數(shù)f(x)在[-2,2]上的最大值、最小值;(2)令,若g(x)在上單調(diào)遞增,求實(shí)數(shù)a的取值范圍。

題型:?jiǎn)柎痤}

已知函數(shù)f(x)=x-alnx(a∈R)(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值。

題型:?jiǎn)柎痤}

請(qǐng)以"直線與平面平行的判定"為課題,完成下列教學(xué)設(shè)計(jì)。(1)教學(xué)目標(biāo)(2)本節(jié)課的教學(xué)重、難點(diǎn)(3)寫出新課引入和新知探究、鞏固、應(yīng)用等及設(shè)計(jì)意圖

題型:?jiǎn)柎痤}

如何理解高中數(shù)學(xué)課程的過程性目標(biāo)?

題型:?jiǎn)柎痤}

,(1)求An;(2)求(A+2E)n。

題型:?jiǎn)柎痤}

一圓與y軸相切,圓心在x-3y=0上,在y=x上截得的弦長(zhǎng)為,求圓的方程。

題型:?jiǎn)柎痤}

高中"等差數(shù)列"設(shè)定的教學(xué)目標(biāo)如下:①通過實(shí)例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項(xiàng)公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識(shí)解決相應(yīng)的問題,體會(huì)等差數(shù)列與一次函數(shù)的關(guān)系:③讓學(xué)生對(duì)日常生活中的實(shí)際問題進(jìn)行分析,引導(dǎo)學(xué)生通過觀察,推導(dǎo),歸納抽象出等差數(shù)列的概念:由學(xué)生建立等差數(shù)列模型用相關(guān)知識(shí)解決一些簡(jiǎn)單的問題,進(jìn)行等差數(shù)列通項(xiàng)公式應(yīng)用的實(shí)踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達(dá)式得到對(duì)等差數(shù)列相應(yīng)問題的研究。完成下列任務(wù):(1)根據(jù)教學(xué)目標(biāo)①,給出至少三個(gè)實(shí)例,并說明設(shè)計(jì)意圖;(2)根據(jù)教學(xué)目標(biāo)②,設(shè)計(jì)至少兩個(gè)問題,讓學(xué)生用等差數(shù)列求解,并說明設(shè)計(jì)意圖;(3)確定本節(jié)課的教學(xué)重點(diǎn);(4)作為高中階段的重點(diǎn)內(nèi)容,其難點(diǎn)是什么?(5)本節(jié)課的教學(xué)內(nèi)容對(duì)后續(xù)哪些內(nèi)容的學(xué)習(xí)有直接影響?

題型:?jiǎn)柎痤}

一商家銷售某種商品的價(jià)格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤(rùn)時(shí)的銷售量;(2)t為何值時(shí),政府稅收總額最大?

題型:?jiǎn)柎痤}

設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對(duì)任何a∈[O,1],有

題型:?jiǎn)柎痤}