問答題

寫出求解常微分方程初值問題的Euler格式和改進Euler格式;取步長h=0.1,手工計算到x=1,精確解為


您可能感興趣的試卷

最新試題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤2,首先利用精確解表達式y(tǒng)=x+e-x,計算出啟動值y(0.1)=1.005,y(0.2)=1.019,y(0.3)=1.041;再分別應用四步四階顯式Milne格式和三步四階隱式Hamming格式。取步長h=0.1,手工計算到x=0.5

題型:問答題

常微分方程y″+3*y′+2*y=sinx,y(0)=α,y′(0)=β為()方程組。

題型:填空題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤1的Euler格式和改進Euler格式;取步長h=0.02,計算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。

題型:問答題

用隱式單步法格式求解常微分方程初值問題,y(0)=1。其中斜率,試確定其絕對穩(wěn)定區(qū)間。

題型:問答題

寫出求解常微分方程初值問題,y(0)=0的Euler格式;精確解為。

題型:問答題

是A的相應λi的特征向量,是A的相應λj的特征向量。

題型:問答題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤0.6的Euler格式;取步長h=0.2,手工計算到x=0.2。

題型:問答題

常微分方程y″′+4*y″+5*y′+2*y=0,y(0)=0,y′(0)=1,y″(0)=0為()方程組。

題型:填空題

寫出求解常微分方程初值問題,y(0)=2,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長h=0.2,手工計算到x=0.4。

題型:問答題

試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應的特征向量:;取初始向量。

題型:問答題