寫出求解常微分方程初值問題,y(0)=1,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=0.2,精確解為y=x+e-x。
广告位招租 联系QQ:5245112(WX同号)
您可能感興趣的試卷
你可能感興趣的試題
最新試題
寫出求解常微分方程初值問題的Euler格式和改進(jìn)Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=1,精確解為。
寫出求解常微分方程初值問題,y(0)=1,0≤x≤1的Euler格式和改進(jìn)Euler格式;取步長(zhǎng)h=0.02,計(jì)算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。
試求出如下m階三對(duì)角矩陣A的逆矩陣A-1的特征值,進(jìn)而求出譜半徑ρ(A-1);;取階數(shù)m=10,參數(shù)分別取為a=1/4,1/2,3/4。
寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=0.1,精確解為。
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
試以Aitken加速冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
試求出實(shí)對(duì)稱矩陣的所有特征值(視情況確定精確或近似特征值)。
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
試求出實(shí)對(duì)稱矩陣的所有特征值(視情況確定精確或近似特征值)。
用隱式單步法格式求解常微分方程初值問題,y(0)=1。其中斜率,試確定其絕對(duì)穩(wěn)定區(qū)間。