判斷題數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。
題型:判斷題
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
題型:判斷題
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
題型:判斷題
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓(xùn)練集上實現(xiàn)更好的分類精度。
題型:判斷題
使用偏差較小的模型總是比偏差較大的模型更好。
題型:判斷題
經(jīng)常跟管理層打交道并進行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項目的成功。
題型:判斷題
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
題型:判斷題
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
題型:判斷題
最大似然估計的一個缺點是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
題型:判斷題
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
題型:判斷題