A.基于圖的凝聚度
B.基于原型的凝聚度
C.基于原型的分離度
D.基于圖的凝聚度和分離度
您可能感興趣的試卷
你可能感興趣的試題
A.O(m)
B.O(m2)
C.O(logm)
D.O(m*logm)
A.MIN(單鏈)
B.MAX(全鏈)
C.組平均
D.Ward方法
A.MIN(單鏈)
B.MAX(全鏈)
C.組平均
D.Ward方法
A.統(tǒng)計(jì)方法
B.鄰近度
C.密度
D.聚類技術(shù)
A.分類器
B.聚類算法
C.關(guān)聯(lián)分析算法
D.特征選擇算法
最新試題
數(shù)據(jù)收集中的拉模式需要通過定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時(shí),MAP估計(jì)等于ML估計(jì)。
管理員不需要驗(yàn)證就可以訪問數(shù)據(jù)存儲(chǔ)系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
要將工作申請(qǐng)分為兩類,并使用密度估計(jì)來檢測(cè)離職申請(qǐng)人,我們可以使用生成分類器。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
隨機(jī)梯度下降每次更新執(zhí)行的計(jì)算量少于批梯度下降。