單項選擇題關(guān)于混合模型聚類算法的優(yōu)缺點,下面說法正確的是()。

A.當(dāng)簇只包含少量數(shù)據(jù)點,或者數(shù)據(jù)點近似協(xié)線性時,混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因為它可以使用各種類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點時不會存在問題


您可能感興趣的試卷

你可能感興趣的試題

1.單項選擇題以下哪個聚類算法不是屬于基于原型的聚類()。

A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE

2.單項選擇題以下屬于可伸縮聚類算法的是()。

A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM

5.單項選擇題關(guān)于K均值和DBSCAN的比較,以下說法不正確的是()。

A.K均值丟棄被它識別為噪聲的對象,而DBSCAN一般聚類所有對象
B.K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C.K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇
D.K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會合并有重疊的簇

最新試題

當(dāng)MAP中使用的先驗是參數(shù)空間上的統(tǒng)一先驗時,MAP估計等于ML估計。

題型:判斷題

任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。

題型:判斷題

假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。

題型:判斷題

公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。

題型:判斷題

數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。

題型:判斷題

數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會成倍的降低訪問時間。

題型:判斷題

由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進行分類,因此它們不可能過度擬合。

題型:判斷題

當(dāng)反向傳播算法運行到達到最小值時,無論初始權(quán)重是什么,總是會找到相同的解(即權(quán)重)。

題型:判斷題

給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因為SVM通常能夠在訓(xùn)練集上實現(xiàn)更好的分類精度。

題型:判斷題

當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。

題型:判斷題