A.信息處理
B.互聯(lián)網(wǎng)搜索
C.分析處理
D.數(shù)據(jù)挖掘
您可能感興趣的試卷
你可能感興趣的試題
A.1-100M
B.100M-10G
C.10-1000G
D.100GB-數(shù)TB
A.頂點(diǎn)方體
B.方體的格
C.基本方體
D.維
A.上卷(roll-up)
B.選擇(select)
C.切片(slice)
D.轉(zhuǎn)軸(pivot)
A.上卷
B.下鉆
C.切塊
D.轉(zhuǎn)軸
A.分布的
B.代數(shù)的
C.整體的
D.混合的
最新試題
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類(lèi)器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
由于分類(lèi)是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
由于決策樹(shù)學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類(lèi),因此它們不可能過(guò)度擬合。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問(wèn)是線性訪問(wèn),但是做了索引的數(shù)據(jù)訪問(wèn)會(huì)成倍的降低訪問(wèn)時(shí)間。
選擇用于k均值聚類(lèi)的聚類(lèi)數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來(lái)設(shè)計(jì)和實(shí)現(xiàn)的。
數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
要將工作申請(qǐng)分為兩類(lèi),并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類(lèi)器。