A.概念描述
B.分類和預(yù)測
C.聚類分析
D.演變分析
您可能感興趣的試卷
你可能感興趣的試題
A.劃分的方法
B.基于模型的方法
C.基于密度的方法
D.層次的方法
A.Euclidean距離
B.Manhattan距離
C.Eula距離
D.Minkowski距離
A.判定樹歸納
B.貝葉斯分類
C.后向傳播分類
D.基于案例的推理
A.分類和聚類都是有指導(dǎo)的學(xué)習(xí)
B.分類和聚類都是無指導(dǎo)的學(xué)習(xí)
C.分類是有指導(dǎo)的學(xué)習(xí),聚類是無指導(dǎo)的學(xué)習(xí)
D.分類是無指導(dǎo)的學(xué)習(xí),聚類是有指導(dǎo)的學(xué)習(xí)
A.判定樹歸納
B.貝葉斯分類
C.后向傳播分類
D.基于案例的推理
最新試題
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
完整性,一致性,時(shí)效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個(gè)維度指標(biāo)。
通過統(tǒng)計(jì)學(xué)可以推測擲兩個(gè)撒子同時(shí)選中3點(diǎn)的幾率。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
使用偏差較小的模型總是比偏差較大的模型更好。