問答題
證明矩陣是可約(reducible)矩陣。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
將下述變上限求積公式:化為等價的常數(shù)分非常初值問題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時的定積分值。
題型:問答題
寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長h=0.1,手工計算到x=0.1,精確解為。
題型:問答題
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
題型:問答題
寫出求解常微分方程初值問題,y(1)=2,1≤x≤2的梯形格式;取步長h=0.2,手工計算到x=1.2。
題型:問答題
試求出實對稱矩陣的所有特征值(視情況確定精確或近似特征值)。
題型:問答題
試以Givens平面旋轉(zhuǎn)變換求出Hessenberg矩陣的QR分解。
題型:問答題
試以冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
題型:問答題
寫出求解常微分方程初值問題,y(0)=0,0≤x≤2的顯示和隱式二階Adams格式;取步長h=0.2,y(0.2)=0.181,手工計算到x=1.0。
題型:問答題
試以冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
題型:問答題
寫出求解常微分方程初值問題,y(0)=2,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長h=0.2,手工計算到x=0.4。
題型:問答題