下述命題正確的是哪個(gè)?且說明理由。
(A)凡行向量組線性相關(guān)的矩陣,它的列向量組也線性相關(guān)
(B)秩為r(r〈n)的n階方陣的任意r個(gè)行向量均線性無關(guān)
(C)若m×n矩陣A的秩r(r〈n),則非齊次線性方程組AX=b必有無窮多個(gè)解
(D)若m×n矩陣A的秩r(r〈n),則齊次線性方程組AX=O必有無窮多個(gè)解,且基礎(chǔ)解系有n-r個(gè)線性無關(guān)解向量組成。
您可能感興趣的試卷
你可能感興趣的試題
利用分塊矩陣方法,計(jì)算A=的逆矩陣。
A.秩為4的4×5矩陣的行向量組必線性無關(guān)
B.可逆矩陣的行向量組和列向量組均線性無關(guān)
C.秩為r(r〈n)的m×n矩陣的列向量組必線性相關(guān)
D.凡行向量組線性無關(guān)的矩陣必為可逆矩陣
已知A為n階方陣,且rank(A)=k,非齊次線性方程組AX=B的n-k+1個(gè)線性無關(guān)解為,則AX=B的通解為()
A.A
B.B
C.C
D.D
最新試題
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
設(shè)A是3×4矩陣,則下列正確的為()
設(shè)矩陣B滿足方程B=,求矩陣B。
求方程組的基礎(chǔ)解系和通解。
設(shè)A為四階方陣,且滿足秩r(A)+秩r(A·E)=4,則A2=()。
設(shè)A=,B=,C=,則(A+B)C=()
向量組的一個(gè)極大線性無關(guān)組可以取為()
已知n元非齊次線性方程AX=b,AX=0為方程AX=b對(duì)應(yīng)的齊次線性方程組,則有()。
試問a為何值時(shí),向量組α=(1,0,-1,2),β=(0,2,a,3),γ=(-1,a,a+1,a-2)線性相關(guān)。
若n階方陣A是正交陣,則下列結(jié)論錯(cuò)誤的是()