已知r1=3,r2=-3是方程y″+py′+q=0(p和q是常數(shù))的特征方程的兩個根,則該微分方程是下列中哪個方程()?
A.y″+9y′=0
B.y″-9y′=0
C.y″+9y=0
D.y″-9y=0
您可能感興趣的試卷
你可能感興趣的試題
設(shè)f1(x)和f2(x)為二階常系數(shù)線性齊次微分方程y″+py′+g=0的兩個特解,若由f1(x)和f2(x)能構(gòu)成該方程的通解,下列哪個方程是其充分條件()?
A.f1(x)·f′2(x)-f2(x)f′1(x)=0
B.f1(x)·f′2(x)-f2(x)·f′1(x)≠0
C.f1(x)f′2(x)+f2(x)·f′1(x)=0
D.f1(x)f′2(x)+f2(x)f′1(x)≠0
A.y=f(x)+c
B.y=f(x)-+c
C.y=f(x)-1+c
D.y=f(x)-1+c
滿足方程f(x)+2f(x)dx=x2的解f(x)是:()
A.-(1/2)e-2x+x+1/2
B.(1/2)e-2x+x-1/2
C.ce-2x+x-1/2
D.ce-2x+x+1/2
A.y=y1(x)+
B.y=y1(x)+c
C.y=y1(x)++c
D.y=y1(x)+c
A.y=cy1(x)+y2(x)
B.y=y1(x)+c2y2(x)
C.y=c[y1(x)+y2(x)]
D.y=c1y(x)-y2(x)
A.(xey-2y)dy+eydx=0
B.xy′+y=ex+y
C.[x/(1+y)]dx-[y/(1+x)]dy=0
D.dy/dx=(x+y)/(x-y)
微分方程ydx+(y2x-ey)dy=0是下述哪種方程()?
A.可分離變量方程
B.一階線性的微分方程
C.全微分方程
D.齊次方程
微分方程y″-6y′+9y=0,在初始條件下的特解為:()
A.(1/2)xe2x+c
B.(1/2)xe3x+c
C.2x
D.2xe3x
A.lny/x=x+2
B.lny/x=cex+1
C.=y/x+2
D.siny/x=y/x
微分方程(y′)3y″=1的階數(shù)為:()
A.1
B.2
C.3
D.5
最新試題
廣義積分e-2xdx=()
設(shè)f(x-1)=x2,則f(x+1)=()
設(shè)D是兩個坐標(biāo)軸和直線x+y=1所圍成的三角形區(qū)域,則xydσ的值為:()
設(shè)D是矩形區(qū)域:0≤x≤π/4,-1≤y≤1,則xcos2xydxdy等于:()
曲面z=y+lnx/z在點(1,1,1)處的法線方程是:()
閉區(qū)間上的間斷函數(shù)必?zé)o界。
若z=f(x,y)在(x0,y0)處的兩個一階偏導(dǎo)數(shù)存在,則函數(shù)z=f(x,y)在(x0,y0)處可微
設(shè)函數(shù) 在x=0處連續(xù),則a=()
若f(x)在x0點可指導(dǎo),則丨f(x)丨也在x0點可指導(dǎo)。
單調(diào)函數(shù)的導(dǎo)函數(shù)也是單調(diào)函數(shù)。