問答題
試將如下的分塊Giwens初等旋轉(zhuǎn)變換矩陣分解為兩個Householder初等鏡像變換矩陣的乘積:Givens初等旋轉(zhuǎn)變換矩陣
您可能感興趣的試卷
你可能感興趣的試題
最新試題
試以冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
題型:問答題
寫出求解常微分方程初值問題,y(1)=2,1≤x≤2的梯形格式;取步長h=0.2,手工計算到x=1.2。
題型:問答題
將下述變上限求積公式:化為等價的常數(shù)分非常初值問題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時的定積分值。
題型:問答題
試求出實對稱矩陣的所有特征值(視情況確定精確或近似特征值)。
題型:問答題
常微分方程y″+3*y′+2*y=sinx,y(0)=α,y′(0)=β為()方程組。
題型:填空題
試以Aitken加速冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
題型:問答題
λi,λj是A的特征值
題型:問答題
寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長h=0.1,手工計算到x=0.1,精確解為。
題型:問答題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計算出3個啟動值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長h=0.1,手工計算到x=0.5
題型:問答題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤1的Euler格式和改進(jìn)Euler格式;取步長h=0.02,計算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。
題型:問答題