您可能感興趣的試卷
最新試題
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類(lèi)器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫(kù)來(lái)存儲(chǔ)。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類(lèi)數(shù)據(jù)的觀察和理解。
由于決策樹(shù)學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類(lèi),因此它們不可能過(guò)度擬合。
完整性,一致性,時(shí)效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個(gè)維度指標(biāo)。
要將工作申請(qǐng)分為兩類(lèi),并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類(lèi)器。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問(wèn)是線性訪問(wèn),但是做了索引的數(shù)據(jù)訪問(wèn)會(huì)成倍的降低訪問(wèn)時(shí)間。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
選擇用于k均值聚類(lèi)的聚類(lèi)數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。