單項(xiàng)選擇題以下哪個(gè)聚類算法不屬于基于網(wǎng)格的聚類算法()。

A.STING
B.WaveCluster
C.MAFIA
D.BIRCH


您可能感興趣的試卷

你可能感興趣的試題

1.單項(xiàng)選擇題關(guān)于混合模型聚類算法的優(yōu)缺點(diǎn),下面說法正確的是()。

A.當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線性時(shí),混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶鞣N類型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點(diǎn)時(shí)不會(huì)存在問題

2.單項(xiàng)選擇題以下哪個(gè)聚類算法不是屬于基于原型的聚類()。

A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE

3.單項(xiàng)選擇題以下屬于可伸縮聚類算法的是()。

A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM

最新試題

根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對(duì)于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對(duì)應(yīng)的存儲(chǔ)系統(tǒng)。

題型:判斷題

無論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。

題型:判斷題

訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。

題型:判斷題

假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。

題型:判斷題

由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。

題型:判斷題

通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。

題型:判斷題

要將工作申請(qǐng)分為兩類,并使用密度估計(jì)來檢測(cè)離職申請(qǐng)人,我們可以使用生成分類器。

題型:判斷題

數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來設(shè)計(jì)和實(shí)現(xiàn)的。

題型:判斷題

對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。

題型:判斷題

數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會(huì)成倍的降低訪問時(shí)間。

題型:判斷題