A.分類
B.回歸
C.模式發(fā)現(xiàn)
D.模式匹配
您可能感興趣的試卷
你可能感興趣的試題
A.決定要使用的表示的特征和結(jié)構(gòu)
B.決定如何量化和比較不同表示擬合數(shù)據(jù)的好壞
C.選擇一個(gè)算法過程使評(píng)分函數(shù)最優(yōu)
D.決定用什么樣的數(shù)據(jù)管理原則以高效地實(shí)現(xiàn)算法
A.模型
B.模式
C.模范
D.模具
A.JP聚類擅長(zhǎng)處理噪聲和離群點(diǎn),并且能夠處理不同大小、形狀和密度的簇
B.JP算法對(duì)高維數(shù)據(jù)效果良好,尤其擅長(zhǎng)發(fā)現(xiàn)強(qiáng)相關(guān)對(duì)象的緊致簇
C.JP聚類是基于SNN相似度的概念
D.JP聚類的基本時(shí)間復(fù)雜度為O(m)
A.概率
B.鄰近度
C.密度
D.聚類
A.STING
B.WaveCluster
C.MAFIA
D.BIRCH
最新試題
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個(gè)角度來設(shè)計(jì)和實(shí)現(xiàn)的。
通過統(tǒng)計(jì)學(xué)可以推測(cè)擲兩個(gè)撒子同時(shí)選中3點(diǎn)的幾率。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對(duì)于問題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對(duì)應(yīng)的存儲(chǔ)系統(tǒng)。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
當(dāng)反向傳播算法運(yùn)行到達(dá)到最小值時(shí),無論初始權(quán)重是什么,總是會(huì)找到相同的解(即權(quán)重)。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會(huì)成倍的降低訪問時(shí)間。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。