證明下列方程組的Jacobi迭代和Gauss-Seidel迭代法都收斂,取初值向量x0=(0,0,0,0)T,迭代1步獲得近似解。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
寫出求解常微分方程初值問題,y(0)=1,0≤x≤4的Euler格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=0.2。
λi,λj是A的特征值
寫出求解常微分方程初值問題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計(jì)算出3個(gè)啟動(dòng)值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長(zhǎng)h=0.1,手工計(jì)算到x=0.5
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2,首先利用精確解表達(dá)式y(tǒng)=x+e-x,計(jì)算出啟動(dòng)值y(0.1)=1.005,y(0.2)=1.019,y(0.3)=1.041;再分別應(yīng)用四步四階顯式Milne格式和三步四階隱式Hamming格式。取步長(zhǎng)h=0.1,手工計(jì)算到x=0.5
寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=0.1,精確解為。
常微分方程y″′+4*y″+5*y′+2*y=0,y(0)=0,y′(0)=1,y″(0)=0為()方程組。
試求出實(shí)對(duì)稱矩陣的所有特征值(視情況確定精確或近似特征值)。
用隱式單步法格式求解常微分方程初值問題,y(0)=1。其中斜率,試確定其絕對(duì)穩(wěn)定區(qū)間。
試以Givens平面旋轉(zhuǎn)變換求出Hessenberg矩陣的QR分解。