試計(jì)算3階Hilbert坡度矩陣的無窮條件數(shù)cond(H3)∞:
您可能感興趣的試卷
你可能感興趣的試題
最新試題
寫出求解常微分方程初值問題,y(1)=2,1≤x≤2的梯形格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=1.2。
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
寫出求解常微分方程初值問題,y(0)=0的Euler格式;精確解為。
試求出如下m階三對(duì)角矩陣A的逆矩陣A-1的特征值,進(jìn)而求出譜半徑ρ(A-1);;取階數(shù)m=10,參數(shù)分別取為a=1/4,1/2,3/4。
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
寫出求解常微分方程初值問題,y(0)=0,0≤x≤2的顯示和隱式二階Adams格式;取步長(zhǎng)h=0.2,y(0.2)=0.181,手工計(jì)算到x=1.0。
寫出求解常微分方程初值問題的Euler格式和改進(jìn)Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=1,精確解為。
λi,λj是A的特征值
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=0.2,精確解為y=x+e-x。
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2,首先利用精確解表達(dá)式y(tǒng)=x+e-x,計(jì)算出啟動(dòng)值y(0.1)=1.005,y(0.2)=1.019,y(0.3)=1.041;再分別應(yīng)用四步四階顯式Milne格式和三步四階隱式Hamming格式。取步長(zhǎng)h=0.1,手工計(jì)算到x=0.5