一根均勻桿,如圖所示,其單位體積質(zhì)量密度ρ,并具有頂部質(zhì)量M,應(yīng)用假定法Ψ(x)=x/L來(lái)推導(dǎo)該系統(tǒng)軸向自由振動(dòng)的運(yùn)動(dòng)方程。假定AE=常數(shù)。
您可能感興趣的試卷
最新試題
求下圖系統(tǒng)所示的各階固有頻率()(記)。
多自由度系統(tǒng),C為比例阻尼模型。按無(wú)阻尼情況求得各階主振型,并構(gòu)成模態(tài)矩陣。則在模態(tài)疊加法的解法過(guò)程中()。
如圖所示主動(dòng)隔振系統(tǒng),,并記彈性力和阻尼力的合力為,下列說(shuō)法錯(cuò)誤的是()。
單自由度有阻尼系統(tǒng)在簡(jiǎn)諧激勵(lì)作用下,其方程為,初始條件為,則響應(yīng)x(t)為下列說(shuō)法不正確的是()。
?一均質(zhì)等截面細(xì)長(zhǎng)直桿做縱向振動(dòng),在兩端固定和兩端自由兩種不同邊界條件下,關(guān)于它們的頻率方程和振型函數(shù)的說(shuō)法正確的是()(不考慮自由桿的ω1=0)。
如圖所示梁的質(zhì)量重G=20KN,振動(dòng)力最大值P=4.8KN,干擾頻率θ=30(1/s),已知梁的E=210GPa,I=1.6*10-4m4。試求兩質(zhì)點(diǎn)處的最大豎向位移。梁自重不計(jì)。
若流體的阻尼力可寫為,假設(shè)其運(yùn)動(dòng)為,求其等效黏性阻尼()(等效原則按一個(gè)周期內(nèi)做功相等)。
?一長(zhǎng)為l的簡(jiǎn)支梁中部有一個(gè)集中質(zhì)量塊M=ρAl,如圖所示。梁的抗彎剛度EJ,密度ρ和截面積A均為已知。A同學(xué)采取單自由度的簡(jiǎn)化方式,將簡(jiǎn)支梁視為剛度為的彈簧,很快給出系統(tǒng)基頻的估計(jì)值ω1A;同學(xué)B覺得此法過(guò)于簡(jiǎn)化,可能存在較大誤差,于是他決定采用連續(xù)體近似解法中的假設(shè)模態(tài)法來(lái)求解,假設(shè)振型取為,得到基頻估計(jì)值ω1B。問(wèn)為多少?()
一簡(jiǎn)支梁在左半部分作用有分布的橫向激勵(lì)力qsin(ωt),如圖所示,求梁中點(diǎn)的振幅()。
如圖所示兩自由度彈簧質(zhì)量系統(tǒng),各彈簧剛度系數(shù)已在圖中標(biāo)出,各質(zhì)量塊的質(zhì)量為2m1=m2=2m。在各質(zhì)量塊上施加與其自身重力成比例的水平作用力,以此條件下的平衡位移為假設(shè)振型X,利用兩種方式定義(最大勢(shì)能與動(dòng)能之比;柔度法定義)的瑞利商估計(jì)此系統(tǒng)的基頻,記為ω1和ω2。系統(tǒng)基頻的精確值記為ω0,則兩種方式估計(jì)出的基頻的相對(duì)誤差和分別為()。