最新試題

將下述變上限求積公式:化為等價(jià)的常數(shù)分非常初值問題,并用題形格式求解積分上限x=0.25,0.5,0.75,1時(shí)的定積分值。

題型:問答題

試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。

題型:問答題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長h=0.1,手工計(jì)算到x=0.2,精確解為y=x+e-x。

題型:問答題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤4的Euler格式;取步長h=0.2,手工計(jì)算到x=0.2。

題型:問答題

常微分方程y″′+4*y″+5*y′+2*y=0,y(0)=0,y′(0)=1,y″(0)=0為()方程組。

題型:填空題

試求出實(shí)對稱矩陣的所有特征值(視情況確定精確或近似特征值)。

題型:問答題

常微分方程y″+3*y′+2*y=sinx,y(0)=α,y′(0)=β為()方程組。

題型:填空題

試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。

題型:問答題

寫出求解常微分方程初值問題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計(jì)算出3個(gè)啟動值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長h=0.1,手工計(jì)算到x=0.5

題型:問答題

寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長h=0.1,手工計(jì)算到x=0.1,精確解為。

題型:問答題